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Abstract. The stop-band width and angular dispersion have been traced by angle-resolved
reflectance spectroscopy for two opposite configurations of opal-based photonic crystals where
either the silica balls possess a higher refractive index than the voids or vice versa. It has been
demonstrated that filling the empty voids of opal with a material of higher refractive index than
silica results in widening of the stop-band and squeezing of its dispersion, thus improving the
stop-band of the opal grating towards the omnidirectional photonic band-gap situation.

1. Introduction

The dispersion of the photonic band-gap (PBG) in photonic crystals is one of the most important
parameters defining whether the photonic crystal possesses an omnidirectional (complete) PBG
or not. A prototype for three-dimensional (3D) photonic crystals operating in the visible range
is the colloidal suspension and its solid counterpart, opal [1]. Opal is a natural grating consisting
of closely packed identical balls where the light is scattered at the interfaces between the SiO2

balls and the air in the voids between the balls. The light scattered from such a package peaks
at a definite wavelength, which satisfies the Bragg condition. The refractive index (RI) contrast
between silica (nball ≈ 1.4) and air is not high enough to provide complete PBG formation
and, therefore, opal is an example of an incomplete-band-gap photonic crystal. However, opal
can be used as a ‘host’ for impregnation of its voids with ‘guest’ material, thus providing
substantial changes in the RI contrast (RIC) [2].

Optical propagation in the spectral range of an incomplete PBG acquires an anisotropy,
which depends on the symmetry of the photonic crystal. For opal-based and colloidal crystals,
the anisotropy of the stop-band has been revealed by changing the angle of incidence of the
light [2–6]. For water-filled and bare opals, the stop-band angular dispersion was found to
satisfy closely the fcc symmetry of the opal lattice according to Bragg’s law [3, 4]. It was
found also that with an increase in the RIC, the effectiveness of the Bragg scattering increases
progressively and the stop-band widens and red-shifts [7, 5, 8–10]. The angular dispersion
of the stop-band is the important parameter, because it shows the extent of the overlap of
the stop-bands for different directions in the photonic crystal. However, to date no attempt
has been made to compare the angular dispersions of the original opal and inverted opal.
In what follows we use the definition of refractive index contrast RIC= nball/nguest− 1 to
distinguish, according to the sign of the RIC [11], whether the balls or the filled voids possess
the higher index. In the present paper we have demonstrated the behaviour of the stop-band in
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complementary incomplete photonic crystal opals having empty voids and opals having voids
infilled with sulphur.

2. Materials and experimental techniques

Opal is the fcc-type packing of amorphous silica-made balls, the deviation of whose diameter is
1D/D < 5%. Figure 1(a) shows clearly the three dimensionality and the fcc nature of the opal
grating since both square and hexagonal packings of balls coexist in intersecting (100) and (111)
planes at random cleaves of the opal. Opal with a ball diameter ofD = 236 nm was used in this
study. SEM inspection revealed that opal samples were oriented with the closest-packed (111)
planes parallel to the surface of the platelet. Opal host material for sulphur treatment was cut
from a single larger piece and the remaining untreated material was then used for comparison.
Complete infilling of the opal voids with sulphur was approached through impregnation with
molten sulphur using the surface tension forces of liquefied sulphur on silica. The micrograph
in figure 1(b) demonstrates the simulation of this void grating obtained by replacing sulphur
with indium in order to visualize the opal replica using scanning electron microscopy. In what
follows we shall label the empty opal ‘air-opal’ and the completely impregnated opal ‘S-opal’.

(a) (b)

Figure 1. SEM pictures of cleaved bare opal (a) and opal with impregnated voids (b).

There are two types of void in an fcc package of spherical balls: octahedral voids (O-voids)
and tetragonal (T-voids), of which the diameters aredO = 0.41D anddT = 0.23D, respectively
[12]. This terminology does not describe the exact shape of the voids but describes that of
the polyhedron which is formed by the silica balls surrounding the void. T-voids are formed
between four and O-voids between six touching balls: the latter configuration is highlighted
in figure 2. These voids are in turn arranged with fcc symmetry, but with the basis of a unit
cell consisting of a total of one O-void and two T-voids, which is the basic difference between
ball and void lattices. Figure 2 shows two adjacent (111) planes of an fcc ball package with
O-voids situated between them, which is the configuration of scatterers actually used in our
experiments. The spacing between the O-voids is the same as the ball spacing, but these lattices
are offset when observed along a (111) axis.

Samples were cut in thin platelet sections with the (111) plane parallel to the large face
of the platelet. This face was illuminated by monochromatic light selected from a Newport
white-light source by a monochromator and the illuminated area was around 1 mm2. The
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Figure 2. Schematic diagrams of ball and void arrangements along (upper panel) and across (lower
panel) a stack of (111) planes. In the upper right-hand corner six balls (three from each plane),
which surround the O-void, are highlighted by thicker borders. The scattering configuration used
in the experiment is shown in the lower panel.

opal used was a textured polycrystal possessing monocrystalline facets of sub-millimetre-
scale dimensions. The random disorientation of the (111) facets was up to 10◦. We assume,
therefore, that the spectra observed were averages over several slightly differently oriented
areas. The transmission and reflectance spectra show a Bragg diffraction feature at the same
wavelength if the light is incident normally on the sample surface. However, with off-normal
optical incidence, the Bragg dip in the transmission rapidly disappears, while its counterpart
in reflectance continues to be clearly resolved. Accordingly, reflectance spectroscopy was
adopted for studies of the diffraction at oblique optical incidence. The depth sampled by
reflectance depends self-consistently upon the scattering strength (see, e.g., the discussion
in [13])—and therefore the reflectance data are free from the attenuation length effect [14].
Reflectance measurements were made on platelets approximately 0.5 mm thick by changing
the angle of the incidence of the light beam with respect to the sample surface (angleθ ) and
collecting the forward-scattered light at the same angle (figure 2). Another rotation around
the axis normal to the sample surface (angleϕ) was made to examine the grating symmetry
properties. Spectra were collected at angle-of-incidence steps of1θ = 5◦ in the range 90◦

to 45◦, for light polarized both in-plane and perpendicular to the plane of incidence. Angular
resolution around 2◦ was obtained by collimating the scattered beam.

Linear polarizers were used to select theE-vector orientation of the incident and scattered
light. It appears, however, that the scattered light does not preserve its polarization, as was
clearly demonstrated by observations of the Bragg peak for cross-aligned polarizers. In
what follows we show the reflectance spectra for the s wave (the opticalE-vector polarized
perpendicular to the plane of incidence) by assuming that, in this case, the scattering is the
same as for unpolarized light [15].

Opal is a non-ideal insulator because it has an absorption band in the range 1.7–3.5 eV
caused by the oxygen vacancies in its silica skeleton [2, 16]. The extent of these defects
depends on the details of the opal synthesis process and, therefore, effects related to the
presence of the corresponding impurity-like band within the forbidden gap of silica appear
differently when an alternative source of opals is used (see, e.g., [4]). Correspondingly, opal
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Figure 3. Reflectance spectra of disordered (curve 1) and ordered (curve 2) air-opals. Both the
diffraction peak (B) and the peak from electronic absorption by the silica defects (E) are shown.
Curve 3 is the diffraction peak (curve 2) after correction using the spectrum of disordered opal.
The spectra are shifted along the vertical axis.

possesses uneven transmission and reflectance spectra irrespective of the degree of order in its
porosity (figure 3). When scanning over the angle of incidence,θ , these features remain in the
same spectral position—but change their magnitude. Furthermore, we use reflectance spectra
of ordered opal, which are divided on those of disordered opal, in order to discriminate the
stop-band-related variations only, first, and to take into account the scrambling of polarization,
second.

3. Experimental results

Figure 4(a) shows the reflectance spectra of air-opal at directions ranging from nearly normal to
the (111) crystalline planes (θ = 85◦) round toθ = 45◦. The peak in a spectrum corresponds
to the interference maximum of the Bragg scattered light. The reflectance intensity at the
peak exceeds the background scattering level by an order of magnitude, while the resolution
of the peak is reduced at angles below 50◦, being restricted by the increase of the background
scattering due to the disorder of the opal package. Bragg resonance atθ = 90◦ was also
observed, but spectral decomposition is required to resolve it clearly. S-opal demonstrates
a shift in the Bragg resonances to lower energy, widening of Bragg peaks and squeezing of
their angular dispersion (figure 4(b)). In order to make a quantitative comparison of photonic
crystals with different stop-band positions, the width of the Bragg peak1E at half-height
was normalized with respect to the central energy of the peak, i.e. we have plotted1E/Ec
(figure 5(a)).

From the set of reflectance spectra at different values ofθ , the stop-band angular
dependence1E(θ) was extracted. Figure 6 compares the dispersion of1E(θ) for air- and
S-opals as the angle of incidence of the light changes from 90◦ to 45◦. Remarkably, for S-opal
the stop-band width increases but the stop-band angular dispersionreducesas compared with
that of air-opal.

The effect of the rotation of the polarization plane upon the Bragg resonance was studied by
rotation of the sample, which corresponds to tracing the stop-band position along an arbitrary
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Figure 4. Bragg resonances at different angles of light
incidence. (a) Air-opal; (b) S-opal. The numbers indicate
the angle in degrees.

Figure 5. (a) The dependence of the relative stop-band
width upon the angle of incidence for air-opal (circles)
and S-opal (squares). (b) A polar graph of the azimuthal
dependence of the stop-band centre of air-opal.
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Figure 6. Angular dispersion of the stop-band FWHM in the
range fromθ = 90◦ to 45◦ for air-opal (a) and S-opal (b).
(c) The linearized dispersion of the stop-band in air- and
S-opals. The numbers indicate the tangents.

circle around the L point of the Brillouin zone. A near 120◦-periodic variation in the Bragg
peak position is revealed (figure 5(b)), indicating the expected threefold symmetry for the
(111) axis. This observation is in agreement with data from low-contrast opal composites [3].
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4. Discussion

Ball lattices and O-void lattices have identical symmetry (see figure 2)—and therefore their
reciprocal lattices are also identical. In consequence, the Bragg resonance of the scattered
light occurs at the same point of the Brillouin zone for the two scattering ensembles. The basic
difference between these crystals is the inversion of the scattering ensemble, since either the
balls (air-opal) or the filled voids (S-opal) have a higher RI, giving positive,nball/nair−1= 0.45,
and negative,nball/nS− 1= −0.275, RICs respectively, wherenball = 1.45, nS = 2.

Scatterers from all planes contribute to the crystal diffraction pattern simultaneously, with
a weighting factor which is essentially a measure of the degree of filling of the planes with
scatterers. The opal plane where the maximum scattering occurs is the most densely packed,
(111), plane of an fcc lattice. Experiments [4, 6] and simulation [17] are in agreement in
indicating that the contributions to the reflectance spectrum from planes other than (111)
planes are less pronounced. This means that, practically, experiments on the Bragg scattering
from a 3D opal-based grating at various angles of optical incidence primarily trace the position
of the resonant scattering by the (111) planes.

A red-shift occurs in the Bragg peak after complete impregnation of opal with sulphur,
due to the increase in the average RI of the gratingnav (figure 4). For a multiple-component
composite, the average RI may be estimated asnav =

∑
i fini , using the volume fraction

fi of the space occupied in the opal package by the component with RIni . This simplified
expression has been found to correlate reasonably well with the Maxwell-Garnett approach
[17]. Then, for opal withfball ≈ 0.87, the average indices arenair−opal = 1.39 for air-
opal andnS−opal ≈ 1.52 for S-opal. The Bragg equation predicts a shift of the scattering
peak accordingλS−opal/nair−opalλair−opal = nS−opal/nair−opal. Remarkably, the effective-
medium estimatenS−opal/nair−opal = 1.09 fits precisely the actual shift of the diffraction
λS−opal/λair−opal= 582 nm/535 nm.

The ratio of the output to the input in the Fourier domain is the transfer function of the
system. While keeping the same lattice parameter, the inversion from air-opal to S-opal can
be described as a spatial redistribution of the high-RI component. The Fourier transform
of the variable part of the RI in a periodic ensemble of scatterers can be factorized into the
structural factor, which describes the symmetry and ordering of the lattice, and the form factor,
which describes the individual properties of the scatterers. Obviously the structural factor
remains the same for air- and S-opal lattices with the same symmetry, but the form factor is
certainly different and, as a result, the amplitude of the Fourier transform is also different. The
observation of PBG enhancement in inverted opal is in agreement with theoretical analysis of
the effects of complexity in the unit cell of a scattering lattice upon the PBG behaviour [18].

The scattering from the densely packed ensembles is essentially a collective effect and the
scattering strength depends on both the size and the spacing of scatterers. The scattering cross-
section of a dielectric sphere becomes several times greater than its geometrical cross-section
when the Mie resonance frequency is approached, i.e. the resonance wavelength isλM ∼ 2πD,
whereD is the diameter of the sphere for which the RI is twice that of the background [19].
On the other hand, in the case of a periodic ensemble the scattered waves interfere to produce a
diffraction pattern which satisfies the Bragg conditions. For a given RIC, the gap width1E/Ec
approaches a maximum when the frequencies of the microscopic Mie and the coherent Bragg
resonances are close to each other [15]. The filling factor of the high-RI component is the
relevant parameter for the appearance of PBG-type behaviour because, for a periodic ensemble,
it describes the correlation between the size and the spacing of the scatterers. To give an idea
of the interplay between the size and the spacing of scatterers, we refer to the 1D case, where
the optimal filling factor was estimated from the synergy of the two resonances asf = 1/(2n),
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wheren is the RI relative to the background [15]. From this point of view the optimal value
fball ≈ 0.36 should occur for air-opal, which is very far from the actual factorfball ≈ 0.87.
The same opal immersed in sulphur has a lower RI ratio, but the filling factorfS = 0.13 of
the S-opal is much closer to the estimated maximum offS ≈ 0.28. It appears that, for this
reason, the Bragg peak appears broader (1E/Ec increases) for S-opal than for air-opal. A full
numerical simulation of the band structure using the plane-wave expansion method, like that
applied to study several opal-related structures [20], is required to extract the more realistic
dependence of the PBG width upon the filling factor for a given crystal.

In general, an incident wave can couple only with those eigenmodes of the photonic crystal
which possess the same wavevectork. In this situation, changes in the stop-band position
(Ec(θ)) with the angle of incidence are equivalent to probing different directions in the fcc
Brillouin zoneEc(k). In experimental studies of opals, changing the angle of incidence away
from the (111) axis shows the variation of the stop-band starting from the L point of the Brillouin
zone of an fcc crystal and then the occurrence of mixing on the way towards the high-symmetry
points W, U and K at the edge of the Brillouin zone. The reason for the above uncertainty
may be small misorientations of the (111) facets, which contribute differently to the scattering
intensity. The correlation between thek-vector and the angle for oblique incidence near the
band-gap was addressed in reference [17], where the refraction at the sample boundaries has
been taken into account. However, the effective RIs of air- and S-opals are very similar (1.39
versus 1.52), so we can neglect this difference as a first approximation and compare their
stop-band dispersions directly. It has been shown that the angular dispersion of the Bragg
peak appears linearized when it is plotted inλ–cos2 θ coordinates if the Bragg law in the form
λ = 2d

√
n2
av − cos2 θ applies [4, 13]. The clear distinction between the stop-band dispersions

of air- and S-opals is seen in figure 6(c). First, the increase of the effective RI of the crystal
shifts the S-opal dispersion to longer wavelengths. Secondly, the redistribution of the high-RI
component actually decreases the gradient of the S-opal dispersion. Both the red-shift and the
squeezing of the stop-band dispersion are in line with band-structure calculations carried out
for air-opal [21] and inverted opal respectively [20].

5. Conclusions

We have observed that inverting the lattice of scatterers in 3D photonic crystals based on opal
hosts from a ball-related to a void-related ensemble of scatterers results in a dramatic change in
the appearance of the stop-band. This inversion is associated with a broadening of the stop-band
and squeezing of its angular dispersion. The main lesson from this work is a demonstration of
the possibility of improving an incomplete photonic band-gap substantially via both an increase
in the width of the stop-band and squeezing of the stop-band dispersion, while maintaining
a situation of moderate refractive index contrast. When the scattering strength of the lattice
increases, the squeezing of the (111) resonance dispersion increases progressively. The latter
statement is definitively supported by observations of further squeezing of the stop-band
angular dispersion for the case of CdS-opal [9] when compared with dispersion curves for
air- and S-opals. This enhanced squeezing arises because CdS-opal possesses a higher RIC
(nCdS ≈ 2.7) than that of S-opal. This observed behaviour supports the continuing hope of
being able to design and produce 3D PBG materials with the technologically most common
compound semiconductors as infill for the opal host. We emphasize that the angular dispersion
of the stop-band is the relevant parameter for possible applications of PBG materials because
it is this parameter that defines how photons incident from a range of different directions will
interact with a photonic crystal.
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